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ABSTRACT

The process of painting fosters creativity and rational planning. However, existing generative AI
mostly focuses on producing visually pleasant artworks, without emphasizing the painting process.
We introduce a novel task, Collaborative Neural Painting (CNP), to facilitate collaborative art paint-
ing generation between users and agents. Given any number of user-input brushstrokes as the context
or just the desired object class, CNP should produce a sequence of strokes supporting the comple-
tion of a coherent painting. Importantly, the process can be gradual and iterative, so allowing users’
modifications at any phase until the completion. Moreover, we propose to solve this task using a
painting representation based on a sequence of parametrized strokes, which makes it easy both edit-
ing and composition operations. These parametrized strokes are processed by a Transformer-based
architecture with a novel attention mechanism to model the relationship between the input strokes and
the strokes to complete. We also propose a new masking scheme to reflect the interactive nature of
CNP and adopt diffusion models as the basic learning process for its effectiveness and diversity in the
generative field. Finally, to develop and validate methods on the novel task, we introduce a new dataset
of painted objects and an evaluation protocol to benchmark CNP both quantitatively and qualitatively.
We demonstrate the effectiveness of our approach and the potential of the CNP task as a promising
avenue for future research. Project page and code: this https URL.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years we have experienced an explosive growth of
AI Art, empowering users with the possibility to generate im-
ages and other media content given various forms of condition-
ing, such as text (Saharia et al., 2022; Rombach et al., 2022) or
semantic maps (Zeng et al., 2022; Avrahami et al., 2023; Zhang
and Agrawala, 2023). Generative AI art in the visual domain
has led to astonishing results for image synthesis tasks (Nichol
et al., 2022; Ramesh et al., 2022; Saharia et al., 2022; Rom-
bach et al., 2022). It typically operates on the pixel space, both
for content generation and editing, where users can modify the
image by indicating the editing areas or describing the desired
modifications (Nichol et al., 2022; Meng et al., 2022).

∗∗Corresponding author:
e-mail: nicola.dallasen@unitn.it (Nicola Dall’Asen)

However, this process of art generation and editing is fun-
damentally different from how humans create art, of which
painting is a primary example (Nakano, 2019). When painting,
humans reason on individual brushstrokes rather than pixels,
and creativity is fostered throughout the stroke design and their
compositional planning. While several works have been pro-
posed which employ a brushstroke formulation, they mainly
focus on producing the entire painting given a reference im-
age or artwork (Liu et al., 2021b; Zou et al., 2021; Kotovenko
et al., 2021), without involving humans in the generation pro-
cess. This limits the degree to which such methods promote
creativity and empathy (Gerry, 2017; Pelowski et al., 2017) that
are particularly important for enhancing educational and peda-
gogical development in children (Beh-Pajooh et al., 2018) or re-
habilitation (Zhang et al., 2021). More recently, (Peruzzo et al.,
2023) proposes an interactive formulation of neural painting in
which the model suggests the next strokes to paint according
to a given reference image. The reference-guided interaction
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Fig. 1. The proposed Collaborative Neural Painting task envisions a collaborative procedure in which users produce and compose artworks iteratively
interacting with a Neural Painter. This interaction includes auto-painting without user input, and assistive painting/editing at any granularity level. We
solve this generation task using a vectorized stroke parametrization whose joint distribution is learned using diffusion models.

might be useful for the learning purpose, however, we argue that
such setup may limit the fostering of creativity during painting,
as the generation is bounded to the given reference picture.

In this work, we propose the novel task of Collaborative
Neural Painting (CNP) which aims to enable a collaborative
creation process of high-quality paintings that promotes active
engagement of human users for creative generation. We de-
sign the interactive process based on brushstrokes that the hu-
man users can provide as context at any phase of their paint-
ing. This is different from previous works (Peruzzo et al., 2023;
Zou et al., 2021; Liu et al., 2021b), as we do not require any
reference image and the user can specify any arbitrary num-
ber of strokes. The agent, i.e., the collaborative neural painter,
subsequently reasons on the context strokes and produces new
strokes in the painting to match the user’s painting intentions
e.g. completing the rough shape of the painting, adding details
or regenerating a missing part, as shown in Figure 1.

CNP is a non-trivial task. It requires understanding the geo-
metric properties of the strokes and how they translate to the fi-
nal painting to generate rich and diverse outputs. It also requires
to deal with an interactive generation process, where the user
can intervene at any time during the painting creation. In this
paper, we also propose to solve CNP using a novel Transformer
architecture which models the relationships between the user’s
and the generated strokes. Specifically, we introduce a novel
Position-aware Attention Bias (PAAB) mechanism in order to
encourage neighboring strokes to share similar semantics. Fur-
thermore, we propose to model user-agent interactions using an
Interaction-aware Masking (IAM) procedure which simulates
interactions with the user at training time. To capture the com-
plex conditional distribution of the strokes given the user’s in-
put, we adopt the diffusion framework (Ho et al., 2020) which
has demonstrated remarkable results in conditional generation
tasks and naturally supports the generation of diverse outputs.

Moreover, to facilitate this study and to promote future re-
search in the proposed task, we present a CNP benchmark,
composed of a novel dataset of painted objects and a new eval-
uation protocol which takes into account both the quantitative

and qualitative aspects of the CNP task. Creating such a dataset
is challenging, since objects in natural images are frequently
occluded, incomplete, or have a low resolution, also depending
on their relative position within the scene. To overcome these
limitations, we employ a state-of-the-art model to create (Rom-
bach et al., 2022) and segment (Liu et al., 2023; Zhao et al.,
2023) objects from generated images, and convert the result-
ing segmented objects into a stroke representation (Zou et al.,
2021). Our method achieves the best performance among all
metrics when compared with other state-of-the-art models that
work with sequential data.

The contributions of our paper are summarized as follows:
• We propose a novel task, Collaborative Neural Painting, to

encourage art generation process with active human engage-
ment.
• We create and release a novel curated dataset to facilitate re-

search on the task.
• We design a benchmark for the task with an evaluation proto-

col with both objective measures and subjective evaluation.
• We propose a diffusion model framework to address Collab-

orative Neural Painting, with a novel attention mechanism
and masking scheme to model the user-agent interaction. Our
proposed method outperforms recent baselines on our bench-
mark. We also showcased its effectiveness in real demonstra-
tion for collaborative painting with human users.

2. Related Works

In this section, we thoroughly discuss research works that are
related to Neural Painting, Controllable Image Generation and
Editing and Masked Data Modelling in generative tasks.

2.1. Neural Painting
Neural Painting (NP) refers to the task of decomposing a

natural image into a set of parameterized strokes. The result-
ing strokes can be rendered on the canvas, obtaining an artistic
version of the original image which mimics the result of an ac-
tual painting. The seminal works of (Haeberli, 1990; Litwinow-
icz, 1997; Hertzmann, 1998) target this task for the first time,



3

proposing heuristic-based methods to decompose a given im-
age into a set of strokes. A parallel line of works focuses
on developing rendering techniques that could faithfully rep-
resent, on digital media, the effect of different physical brushes
(Wang et al., 2014; Sochorová and Jamriška, 2021; Strassmann,
1986; Curtis et al., 1997). With the progress of deep learning,
these methods have been replaced by learning-based methods.
In particular, the task is formulated as a reinforcement learn-
ing (RL) problem, where the agent is the painter, the action
space is represented by the different strokes the agent can dis-
place in the canvas, and the reward is given by the similarity
between the painted canvas and the reference image (Huang
et al., 2019; Singh et al., 2022a; Schaldenbrand and Oh, 2021).
Differently, Zou et. al. (Zou et al., 2021) formalizes the task
as an optimization problem, where the stroke parameters are
directly optimized to approximate the reference image leverag-
ing a differentiable renderer. To overcome the time burden of
the optimization process, (Liu et al., 2021b) proposes to adopt a
Transformer-based architecture for regressing the stroke param-
eters and design a synthetic data generation pipeline to train the
model.

Despite achieving good qualitative results, previous methods
do not consider the dimension of user interaction in the gen-
eration process. Intelli-Paint (Singh et al., 2022a) introduces
this idea in a reinforcement learning framework, rewarding the
agent for painting in a layered and localized way, more like a
human would do. Another line of work is represented by Inter-
active Neural Painting (Peruzzo et al., 2023) in which the model
interacts with the user by predicting the next strokes based on
the user input. The final goal of the model is to paint a reference
image provided by the user.

Our work shares the same motivation with (Singh et al.,
2022a; Peruzzo et al., 2023), but we further push the boundaries
of interactivity by explicitly targeting a collaborative scenario
with the user without a reference image and without limiting
the number of strokes predicted by the model. The goal of our
model is to coherently complete an object based on the inter-
actions with the user. Moreover, we address the more realistic
problem of generating a painting without the reference image,
which is a task a human can easily accomplish but none of the
previous NP methods can do.

2.2. Controllable Image Generation and Editing

There exists a substantial corpus of literature for the purposes
of controllable image generation and editing. Numerous GAN-
based approaches have been developed, which involve the in-
version and manipulation of images within the latent space.
Other methods condition the generation on additional signals,
which are intuitive for the user to control and modify, like seg-
mentation maps, sketches, and text (Park et al., 2019; Zhu et al.,
2020; Ghosh et al., 2019; Liu et al., 2021a; Ling et al., 2021).
Notably, (Singh et al., 2022b) proposes to use parameterized
strokes, similar to the ones adopted by NP methods, as an intu-
itive manner of sketching an image, and train a StyleGAN-like
model to generate realistic images from incomplete drawings.
Recently, diffusion-based approaches emerged as state-of-the-
art for controllable image generation. Most of these methods

are powered by large pre-trained diffusion models (Rombach
et al., 2022; Nichol et al., 2022; Balaji et al., 2022; Saharia et al.,
2022), which are then finetuned or adapted for the specific task
at hand. One line of works explores generating image varia-
tions given a set of representative images, either by finetuning
the whole model (Ruiz et al., 2022) or by optimizing a text em-
bedding (Gal et al., 2022; Mokady et al., 2022). Exploiting
the recent advancement in language and vision understanding,
other works propose to use text as an intuitive way of mod-
ifying the generated image (Brooks et al., 2023; Hertz et al.,
2022; Parmar et al., 2023; Tumanyan et al., 2022). To improve
control over the spatial layout of the final output, segmenta-
tion masks are introduced as conditioning in (Zeng et al., 2022;
Avrahami et al., 2023), while sketches are used in (Voynov
et al., 2022). ControlNet (Zhang and Agrawala, 2023) proposes
an effective condition mechanism by training a hypernetwork
on a dataset of paired examples consisting of images and con-
dition signals, and conditioning the main pre-trained network
using skip-connections.

Our work differs from these methods because we do not op-
erate directly in the pixel space, but adopt a vectorial repre-
sentation of the image. By representing the image as a set of
parameterized strokes, we can achieve editing capabilities by
design. Our method offers the flexibility to make adjustments
at any level of detail, without relying on external models. Full
control is given to the user, who can change the layout of the
image by modifying the position of the strokes, resizing them,
and rendering at arbitrary output resolution.

As summarized in Tab. 1, we position our work with respect
to the existing literature in terms of (i) the model’s capabil-
ity to synthesize images from scratch, (ii) the ability to sup-
port interactive generation, (iii) the dependency on large-scale
datasets or external models (e.g. pretrained segmentation net-
works), and (iv) the vectorial representation of images, which
provides built-in editing capabilities.

2.3. Masked Data Modeling in Generative tasks

Masked Data Modeling refers to the task of reconstructing
partially corrupted data, and recently gained popularity both
for representation learning and generative purposes. Notably,
BERT (Devlin et al., 2019) proposes a masked reconstruction
strategy as a strong pretraining objective for NLP tasks. Differ-
ent from autoregressive formulation, masking enables bidirec-
tional context, increasing the model’s expressiveness and per-
formance. In the visual domain, MaskGIT (Chang et al., 2022)
successfully applies a similar strategy to image generation, in-
troducing an iterative sampling policy at inference. Recently,
denoising diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song and Ermon, 2019) have emerged as a class
of generative models showing state-of-the-art performances in
many tasks. Masked Data Modeling can be integrated into the
training of Diffusion Models, treating the unmasked regions as
conditioning information. MAGVIT (Yu et al., 2023) extends
MaskGIT to video domains, using a similar masking strategy.
Wei et al. (Wei et al., 2023) propose to condition diffusion
models on masked input to formulate them as masked autoen-
coders, which enables image inpainting at different levels of
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Table 1. Positioning of our work w.r.t. Neural Painting and Image Editing
models.
Task Neural Painting Image Editing Ours

(i) Synthesis from scratch ✗ ✓ ✓
(ii) Interactive generation ✗ ✓ ✓
(iii) No dependency on external models ✓ ✗ ✓
(iv) Vectorial representation ✓ ✗ ✓

detail. Following this line of work, Tashiro et al. (Tashiro et al.,
2021) propose a score-based diffusion model for the imputa-
tion of missing values in time series, simulating the missing
data at training time through a carefully designed masking pro-
cedure. We build on these emerging trends and introduce a
diffusion-based method for controllable neural painting exploit-
ing masked data modeling as a methodology to simulate users’
interactions with the model. Differently from previous works,
our masking strategies are not random but interaction-aware,
making it suitable for interactive tasks.

3. Preliminaries

We first introduce some knowledge that serves as background
for our method, in terms of diffusion models and the conditional
generation with classifier-free guidance.
Diffusion Models. Gaussian diffusion models rely on a for-
ward noising process that gradually applies noise to real data x0:
q(xt |x0) = N(xt;

√
ᾱt x0, (1−ᾱt)I), where constants ᾱt are hyper-

parameters. The model then learns the reverse process to invert
forward corruption process: pθ(xt−1|xt) = N(µθ(xt),Σθ(xt)), us-
ing neural networks to approximate the intractable distribution
q(xt−1|xt). Using the ϵ-parametrization (Ho et al., 2020), the
model is trained with the mean-squared error between the pre-
dicted noise ϵθ(xt) and the ground truth sampled Gaussian noise
ϵt:

Lsimple(θ) = ||ϵθ(xt) − ϵt ||22 (1)

At inference time, new data can be sampled by initializing
xT ∼ N(0, I), and sampling xt−1 ∼ pθ(xt−1|xt). The reverse
process can be expressed as:

pθ(xt−1|xt) =
1
√
αt

(
xt −

1 − αt
√

1 − ᾱt
ϵθ(xt)

)
+ σtz (2)

We adapt the DDPM formulation (Ho et al., 2020) and mod-
ify it to work in the masked setting of interactive neural paint-
ing, as we aim at denoising only a part of the stroke sequence.
Classifier-free guidance. Conditional diffusion models take
additional information, such as a class label c, as input. In this
scenario, the reverse process becomes pθ(xt−1|xt, c). To guide
the probability mass towards data where the implicit classifier
pθ(c|xt) has a high likelihood, classifier-free guidance can be
employed (Ho and Salimans, 2022) and can produce consider-
ably improved samples over generic sampling methods (Nichol
et al., 2022; Ramesh et al., 2022; Peebles and Xie, 2022). This
requires training the model in both conditional and uncondi-
tional cases and merging the predicted scores. During train-
ing, the evaluation of the diffusion model with c = ∅ is ac-
complished by randomly dropping out c and replacing it with a

learned ”null” embedding ∅. At inference time, given a guid-
ance scale s > 1, the modified score becomes:

ϵ̂θ(xt, c) = ϵθ(xt, ∅) + s · (ϵθ(xt, c) − ϵθ(xt, ∅)) (3)

4. Task formulation

In this section, we define the Collaborative Neural Paint-
ing (CNP) task, where a painting is iteratively generated ac-
cording to different conditioning signals provided by the user.
We represent a painting using a sequence of parametrized
strokes s = (s1, ..., sL) ∈ RL×8, where L is the number of strokes.
Following previous literature (Zou et al., 2021), each stroke
si ∈ R8 is defined as a set of 8 parameters which describe: the
position (x, y), the size (w, h), the rotation (θ) and the color (r,
g, b). The stroke sequence can be used to render the painting
in the pixel space using a parameter-free renderer (Liu et al.,
2021b). Given a primitive brushstroke, we apply a set of affine
transformations dictated by the stroke parameter, obtaining the
foreground and the alpha matte of the given stroke. The final
painting is obtained by sequentially composing the individual
strokes on the canvas. We refer to (Liu et al., 2021b) for addi-
tional details.

To mimic how human paints, we define and organize the
stroke sequence into different granularity levels (Zou et al.,
2021): from coarse strokes that define the object’s shape in the
first level towards smaller and finer details in the following lev-
els. Specifically, we progressively divide the input image into
overlapping blocks of size m×m, with m representing the gran-
ularity level. For each block in the current level, we initialize
N = 12 strokes and optimize the parameters following (Zou
et al., 2021) (See Fig. 3). In this work, we set the maximum
number of levels m to 4, resulting in 400 strokes per image.

To enable collaborative painting, we also introduce two com-
plementary conditioning signals which can be used by the user
to interact with the painting process: a class label c and a se-
quence of strokes sctx ∈ RL′×8 representing a partially incom-
plete painting. More formally, the Collaborative Neural Paint-
ing process consists in a G, a.k.a. the paining agent, that pro-
duces the sequence of strokes s given the user-provided condi-
tioning signals:

s = G(c, sctx). (4)

This formulation enables the collaborative generation pro-
cess with great freedom. In its simplest form, the CNP frame-
work can be used for the completion of paintings without any
context, i.e. by setting sctx to an empty sequence ∅, and specify-
ing only the desired object class c. Other functionalities are also
possible by varying the conditioning signals. For instance: i) a
coarse representation of the painting can be predicted with few
strokes from the user, ii) a detailed painting can be produced
from a coarse drawing by representing the coarse painting as
the conditioning sequence sctx with or without class supervi-
sion, iii) an entire part of a generated subject can be altered by
erasing it and letting the generator complete the painting with
or without class supervision. The generation can be iterative
according to user’s demand, by simply updating the sequence
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Fig. 2. Given an input sequence s, the Interaction-Aware Masking block divides the sequence in two, a conditioning sequence sctx which acts as context to
denoise the missing strokes sp that, using a diffusion framework, are noised to sp

t . Our Position-aware Attention Bias modifies the attention scores of our
Transformer based on the Euclidean distance between the conditioning and noised strokes.

m = 1 m = 2 m = 3 m = 4

Fig. 3. Examples of granularity levels. From left to right shows the granu-
larity from the lowest (m=1) to the highest (m=4).

sctx in Eq. 4,until the desired painting is obtained (see Fig. 1 for
visual examples of these interactions).

5. Proposed Method

Our method is designed to mimic a collaborative scenario be-
tween the user and the painting agent G. Given a sequence of
strokes s describing the painting of an object of class c, we di-
vide it into two subsequences: the conditioning sequence sctx

and the target sequence sp. We propose an Interaction-aware
masking (IAM) procedure to capture the different types of inter-
actions between the user and G and use it to split the sequence
s into context and target respectively.

Moreover, to effectively model the relationship between
the target and conditioning stroke sequences, we introduce a
Masked Diffusion Transformer (MDT) based on (Peebles and
Xie, 2022). However, we find that the standard attention mech-
anism does not capture the relationship between strokes satis-
factorily. To address this problem, we devise a Position-aware
Attention Bias (PAAB) that encourages higher attention scores
between spatially neighboring strokes.

We train our model using the ϵ-parametrization of the diffu-
sion framework (see Eq. 1). Random noise is added to the target
sequence sp, and the model is trained to reconstruct the noise
conditioned on the class information c and the clean context se-
quence sctx. At inference time, the user provides the context
strokes (if any) and the class information. We then initialize the
predicted strokes sp

T with Gaussian noise and denoise them for
T steps conditioned on the user’s inputs. In this stage, we lever-
age classifier-free guidance to increase the faithfulness of the
predictions to the conditioning signals and extend it to a Mul-
tiple Conditions Classifier-free guidance to treat each of them
separately.

In the next sections, we describe each part of our method in
detail; Sec. 5.1 describes the Interaction-aware masking pro-
cedure, Sec. 5.2 describes our Transformer-based architecture,
Sec. 5.3 describes our Position-aware Attention Bias, and fi-
nally, Sec. 5.4 describes the employed Multiple Conditions
Classifier-free guidance procedure.

5.1. Interaction-aware Masking

The collaborative scenario described in Sec. 4 covers diverse
ways the user and the painting agent can interact. They include
modifying, adding, or deleting individual strokes, re-generating
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a localized area of the painting, completing a coarse sketch pro-
vided by the user, and even generating an entire painting from
scratch.

To mimic these types of interactions at training time, we
introduce Interaction-aware masking (IAM) which, differently
from the random masking strategies employed in previous
works (Devlin et al., 2019), simulates at training time the in-
teraction patterns that are expected at inference. In practice, we
design different masks m to cover various use cases:
• Granularity level: simulates the task of generating fine de-

tails from coarse sketches of an object. We sample a random
level of detail in the input sequence (see Sec. 4), and mask all
the strokes belonging to successive levels with finer details.
• Random: simulates retouching operations on a given paint-

ing, involving the generation of strokes in different spatial
locations and conveying different levels of details. We use
random masking to mimic this use case.
• Square: simulates the generation of a local area of the paint-

ing. We remove multiple strokes in the sequence, based on
the distance from a pivot stroke chosen at random, effectively
creating a square mask in the rendered image. Note that spa-
tially neighbor strokes are not necessarily consecutive in the
stroke sequence.
• Block: simulates the undoing of the last N consecutive

strokes suggested by the model. We achieve it by masking
adjacent strokes in the sequence which can span across gran-
ularity levels and be not spatially related to each other.
• No context: simulates the case where no context stroke sctx

is provided by the user. In this case, we mask out the whole
conditioning sequence and condition the model only on the
desired object class c.

During training, for each sample, we randomly select one of
these strategies and produce sctx = s ⊙m, where s is the stroke
sequence sampled from the dataset.

5.2. Masked Diffusion Transformer
In this section, we describe the Masked Diffusion Trans-

former on which the collaborative painting generation process
is based. We adopt the DDPM diffusion framework (Ho et al.,
2020) and introduce a model E parametrized to predict the noise
in the stroke sequence (see Fig. 2). The model is conditioned on
the class c, the context strokes sctx, and the diffusion timestep t:

ϵ p = E(sp
t |c, s

ctx, t), (5)

with sp
t being the noisy sequence of target stroke parameters,

and ϵ p the predicted noise. Note that no noise is applied to the
conditioning information sctx (Tashiro et al., 2021). We denote
with s̃t = sctx ⊕ sp

t the combination of conditioning and noisy
strokes. At inference time, we initialize the predicted strokes
sp

T ∼ N(0, 1), and denoise them for T steps, with s̃0 correspond-
ing to the combination of the final predicted sequence and the
context information.

Modeling an effective architecture for E is a challenging task,
due to the sequential structure of strokes, and the necessity to
model their relationship with the variable-length conditioning
sequence provided by the user. We propose an approach based
on a Transformer encoder architecture (Vaswani et al., 2017),

which can handle long input sequences and model pairwise
stroke relationships thanks to self-attention. To accommodate
our problem formulation, the network accepts two sequences
of length L as inputs. The first sequence is the noisy sequence
of strokes sp

t , while the second is the conditioning strokes se-
quence sctx, which provides the context for the denoising pro-
cess. Each sequence is embedded using separate linear layers
to form embedding sequences ep, ectx ∈ RL×F , with F being the
feature dimension of our Transformer. We consider strokes in
corresponding positions to be mutually exclusive, i.e. a stroke is
either a conditioning stroke, or a stroke to be predicted, and use
a binary mask m ∈ {0, 1}L which indicates, for each position in
the sequence, if the stroke represents a conditioning signal (1)
or is to be predicted (0). Finally, the input to the Transformer
model is e = ep ⊙ (1 −m) + ectx ⊙m.

Additionally, we condition the model on the class c, which is
embedded into a learnable vector of size F. We combine this
vector with the Fourier mapping of the logSNR corresponding
to the diffusion time-step t (Hoogeboom et al., 2023), and con-
dition the model with the adaLN-Zero block (Peebles and Xie,
2022).

The output of the Transformer blocks is projected by a linear
layer to the predicted noise ϵ p ∈ RL×8. We exclude the context
from the loss computation by masking the predicted noise, and
train the model with the loss in Eq. (1).

5.3. Position-aware Attention Bias

The default attention mechanism makes each token attend to
any other independently from its semantics. We argue that this
behavior is suboptimal for the painting generation task, where
each stroke in the sequence bears semantic-rich information. In
particular, we consider local proximity as a robust prior infor-
mation source. It is likely that spatially neighboring strokes will
have an impact on one another and present consistent features,
such as color or orientation. These cues can come from either
the conditioning sequence, which provides real grounding for
missing parameters, or the spatial neighboring strokes in the
noisy sequence.

Recalling that traditional attention scores in self-attention
are defined as σattn(Q,K) = softmax

(
QKT /

√
dk

)
, we address

this limitation by introducing a novel Position-aware Atten-
tion Bias, which biases attention based on the distance between
strokes. We compute the distance on the sequence obtained by
combining the conditioning and the noisy strokes:

σPAAB(s̃t) = softmax
(
−((s̃i

t |x − s̃ j
t |x)2 + (s̃i

t |y − s̃ j
t |y)2)

)
, (6)

where i, j ∈ [1, L] denote the position of the stroke in the se-
quence. We then combine the two scores with a weighted sum:

σ(Q,K, s̃t) = λt · σPAAB(s̃t) + (1 − λt) · σattn(Q,K) (7)

where λt represents the weighting factor. In early experiments,
we found that using constant weighting value leads to subop-
timal performances (see Tab.4). In fact, the larger the corrupt-
ing noise, the less confident we can be that two strokes will be
neighbors in the final generated sequence. To account for this
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phenomenon, we propose to control the strength of the attention
bias as a function of the logSNR of the diffusion process:

λt =
log SNRt − log SNRmin

log SNRmax − log SNRmin
· (λmax − λmin) + λmin (8)

5.4. Multiple Conditions Classifier-free guidance

Our setting considers two different types of conditioning: the
class information c and the conditioning strokes sctx. Liu et
al. (Liu et al., 2022) show that a conditional diffusion model can
produce improved results by combining score estimates from
various conditioning signals. We apply the same strategy to our
model with two separate conditioning input types. Following
Classifier-free guidance formulation (Ho and Salimans, 2022),
we train a single model dropping the conditioning signals dur-
ing training. We use a special learnable token ∅ to learn the
case where the class is not provided, while our IAM strategy
already captures the scenario where no context stroke is given.
We introduce two guidance scales, s1 and s2, which control, re-
spectively, the correspondence to the conditioning strokes sctx

and the class c. The modified score estimate becomes:

ϵ̂(sp
t , c, s

ctx) = ϵ̂(sp
t , ∅, ∅)

+ s1 · (ϵ̂(sp
t , ∅, s

ctx) − ϵ̂(sp
t , ∅, ∅))

+ s2 · ( ϵ̂(sp
t , c, sctx) − ϵ̂(sp

t , ∅, sctx) )

(9)

unconditional

full conditional no class

Setting s1 and s2 to 1 would leave only the full conditional
part. Note that alternative formulations to combine the scores
are possible, e.g. by switching the position of c and sctx, but this
formulation naturally accommodates our CNP task.

6. Evaluation Benchmark

In this section, we introduce a novel benchmark for the Col-
laborative Neural Painting task, which is designed to evaluate
the performance of different methods in a collaborative sce-
nario. We curate a novel dataset (Sec. 6.1) that covers a wide
range of possible interactions between humans and the agent in
the context of painting (Sec. 6.2). Additionally, we devise a set
of metrics to quantitatively evaluate the performance of these
models with this dataset (Sec. 6.2).

6.1. Dataset

Given the novel nature of the proposed task, we could not
find any ready-to-use public dataset for it. At the same time,
existing large-scale datasets of natural images are not suitable
as they do not specifically feature objects, with occlusion pos-
sibly compromising the stroke representation. Therefore, we
design a data engine to produce a large curated dataset to en-
able the study on the CNP task. The data generation pipeline is
divided into three steps and we showcase it in Fig. 6:

1. We feed the prompts ”a photo of a single full-size, full-
body [obj], whole figure”, ”a photo of a full-body [obj] ”,
”a high-resolution photo of a full-body [obj] ”, ”a DSLR
photo of a full-body [obj] ” to Stable Diffusion (Rombach
et al., 2022), with [obj] indicating the desired class. We
use Stable Diffusion v2.1 and generate images at resolution
512 × 512 using the DPMSolver (Lu et al., 2022) scheduler.

2. We remove the background from the generated image, as
we are interested in the object itself. To do so, we first use
GroundingDINO (Liu et al., 2023) conditioned on the known
class [obj] to obtain a bounding box of the object and Fast-
SAM (Zhao et al., 2023) to obtain the corresponding segmen-
tation mask. Then, with the bounding box and segmentation
mask, we isolate the object from the background and we cen-
ter crop the image to have the object in the middle of it. Since
we know the desired class beforehand, we exploit the rich se-
mantics from text to segment the animals. This also allows us
to build an automatic pipeline from [obj] to the final stroke
representation without manual intervention.

3. We represent the foreground image as a sequence of strokes,
using Stylized Neural Painting (Zou et al., 2021) for its flex-
ibility. We set the parameters of SNP to have four layers of
details and limit the number of strokes describing each image
to 400.
Note that our pipeline follows a modular design, where each

module can be flexibly updated. Our current implementation is
composed of off-the-shelf components that represents the state
of the art in order to achieve the best quality dataset. More-
over, our data-generation pipeline is fully automatic and class
agnostic. Thus, it can readily include more object categories or
increase the dataset size and diversity. In this work, we choose
to generate data of 10 animal classes: cat, dog, eagle, elephant,
lion, parrot, rabbit, squirrel, tiger and wolf. They are easily
recognizable with great inter and intra-class diversity, thus al-
lowing for objective and subjective evaluation with less ambi-
guity to kick off the research. We generate at least 10K images
for each class, with 500 left out for testing. There are a total of
101.052 decomposed sequences for the whole dataset. We show
some examples in Fig. 4 while we show examples of generated
and segmented images in Fig. 6.

6.2. Evaluation Protocol

Existing benchmarks for image synthesis are inadequate to
capture the interactive nature of the CNP task. In Sec. 5.1 we
discussed several masking strategies, namely block, level, ran-
dom, no context, and square, designed to capture multiple in-
teractive scenarios. We use those masking strategies as tasks to
mimic, in an automatic way, the interaction between the user
and the painting agent, and use them for evaluation.
Metrics. We introduce a set of metrics to quantitatively eval-
uate the proposed methods. First, we render the predicted and
context strokes s̃0, and compare it with the rendered test set.
Following the image inpainting literature (Zheng et al., 2022;
Liu et al., 2019), we compute the Fréchet Inception Distance
(FID) (Heusel et al., 2017), and a sample-wise L2 distance.
Second, we design a metric specific for the stroke-based formu-
lation and evaluate the similarity between predicted parameters
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Table 2. Quantitative results of our models compared to the baselines. Stroke L1 is reported in ×10−3, Image L2 is reported in ×10−4. All the metrics the
lower the better.

Method Block Level Random Square No ctx

FID Stroke L1 Image L2 FID Stroke L1 Image L2 FID Stroke L1 Image L2 FID Stroke L1 Image L2 FID

Continuous Transformer 35.87 144 188 81.12 145 269 101.54 127 665 25.54 135 288 443.86
BERT 142.89 198 328 250.54 196 406 247.07 196 117 33.89 197 195 320.43

MaskGIT 149.54 205 265 261.27 206 398 250.75 200 111 35.16 211 193 336.18

Ours 6.20 127 94 7.29 125 100 12.69 126 103 5.53 142 154 30.12

Fig. 4. Examples of rendered sequences from the dataset.

and ground truth strokes computing aL1 distance. Although or-
dering is crucial for determining the rendering priority of over-
lapping strokes and subsequent levels, non-overlapping strokes
in the same granularity level can be swapped without affecting
the result. For this reason, before computing the distance, we
perform a Hungarian Matching (Kuhn, 1955).

We compute the metrics for each task separately to gauge
their respective difficulty. In practice, we sample ∼5K se-
quences from the test set and create the conditioning sequence
sctx by applying the masking corresponding to the given task.
Note that for the no context case, we cannot compute sample-
wise metrics, thus we rely only on the FID.

7. Experiments

To the best of our knowledge, no existing model is able to
operate interactively on painting strokes for image generation.
Hence, for comparative analysis, we used state-of-the-art meth-
ods for sequence modeling and adapted them to fit our task.
We first provide the implementation details of our method in
Sec 7.1. We then present comparison against the baselines and
discuss the results in Sec. 7.2. Besides automatic metrics, we
have conducted a user study to assess human preference among
different methods and report the results in Sec. 7.3. Moreover,
we evaluate the effect of our proposed components and training

strategies with an ablation study in Sec. 7.4. Lastly, we report
the real-time analysis of our method in Sec. 7.5.

7.1. Implementation Details
Architecture. Our model is based on the Transformer (Vaswani
et al., 2017) architecture. Given an input sequence of strokes of
dimension L × 8, we split it into context and target using our
IAM masking strategy (see Fig. 2 of main paper). In practice,
the sequence is multiplied by two binary masks, with zero to
mask out strokes. We then concatenate the context and target
sequences on the feature dimension, resulting in a sequence of
size L × 16. Next, we use a linear layer to project the input se-
quence of strokes to the feature size of the Transformer model
L × F. Since the two sequences are mutually exclusive with
value 0 in the empty positions, the linear projection does not act
on these values, effectively acting as two separate projections
on the two sequences. Lastly, we add sinusoidal positional em-
beddings (Vaswani et al., 2017) to the sequence and feed it to
the Transformer model. GELU non-linearities (Hendrycks and
Gimpel, 2016) (approximated with tanh) are used in the core
Transformer.

To inject the diffusion timestep information t and control the
diffusion process with the class information c, we employ the
adaLN-Zero block (Peebles and Xie, 2022), due to its demon-
strated performance. To embed the input time steps we use a
256-dimensional frequency embedding (Dhariwal and Nichol,
2021), followed by a two-layer MLP with SiLU activations with
a output dimension equal to the Transformer’s hidden size F.
Next, we sum the time-step and the class embedding and feed
it to the adaLN-Zero layer. In addition to regressing the values
of the scale γ and the shift β as in AdaIN (Huang and Belongie,
2017), adaLN-Zero also regresses dimension-wise scaling pa-
rameters δ, which are applied before any residual connection
within the blocks. We regress the scaling parameters using a
linear projection, which is initialized to output a zero-vector
for all the δ values. For each operation op (attention or feed-
forward) the equation becomes: out = x + δ · op(γ · x + β).
Masking. The random masking technique is implemented by
randomly selecting a masking ratio in the range [0.1, 0.9] and
dropping strokes accordingly in the sequence. For the level
masking, we randomly select a granularity level between 1 and
3, and mask all the strokes that belong to subsequent levels, ef-
fectively training the model to add details to an existing rough
representation of the given object. The block masking tech-
nique involves randomly selecting a starting point in the se-
quence and masking a block of contiguous strokes with a length
in the range [10, 0.75 · L], with L the sequence length. Lastly,
in square case we select a stroke in the sequence at random as
the center and build a square of side length 0.5, masking all
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Level Square Random Block No context
sctx s̃0 sctx s̃0 sctx s̃0 sctx s̃0 s̃0

Fig. 5. Qualitative completion results of our method. Images are organized in blocks of 2. On the left the conditioning sequence sctx, on the right the
conditioning with the completion added, i.e. s̃0.

the strokes spatially contiguous to the center. During training,
we select one of the above strategies with equal probability and
apply it to split the sequence into context and target strokes.
Diffusion Model. We followed the formulation of “simple dif-
fusion” (Hoogeboom et al., 2023), defining the noising sched-
ule in terms of SNR = α2

t /σ
2
t and keeping the default values

min log SNR = −15 and max log SNR = 15. We do not employ
any weighting on the losses and train the model with theLsimple

formulation (Ho et al., 2020).
Training hyper-parameters. We train all models with
Adam (Kingma and Ba, 2014) and a cosine annealing sched-
ule for the learning rate, where the maximum value is 1 × 10−4.
We train with a global batch size of 256 divided on 4 GPUs.
Following the common practice in the generative modeling lit-
erature, we maintain an exponential moving average (EMA) of
the weights over training with a decay of 0.9999. All reported
results use the EMA model.
Sampling. For the diffusion reverse process we use the standard
DDPM (Ho et al., 2020) sampler with 1000 steps.
MC-CFG. We choose the hyper-parameters of our Classifier-
free guidance, s1 and s2 to be 1.5 in order to weigh the impor-
tance of the conditioning sequence and the class information.
Inference-time stroke position. At inference time, e.g. the
demo, we start without strokes and we do not use the IAM mod-
ule. Since Stylized Neural Painting fixes the maximum number
of strokes in each cell, when the user draws strokes on the can-
vas at inference time, the size and position of the strokes allow

finding the corresponding cell. Given a level l and the grid de-
scribed above, a stroke in that level cannot have a size greater
than 1/l, therefore we can pick the correct level by choosing the
first level whose maximum stroke size is the closest to the input.
After the level, the correct cell can be identified by the position
of the strokes. Then, the stroke gets added to the part of the
sequence corresponding to the given cell in the first available
slot, and we update the occupant mask m accordingly.

7.2. Comparison

Baselines. Inspired by the success of Transformer-based mod-
els in NLP tasks, where the input belongs to a fixed-sized vo-
cabulary, we compare our method with a baseline operating
with discrete input. In practice, we discretize the stroke pa-
rameters independently into a codebook of size 256. We train
the model in a BERT-like fashion (Devlin et al., 2019), mask-
ing the strokes and predicting the original tokens with cross-
entropy loss. At inference time, we operate this baseline in two
ways: (i) predicting the missing strokes in one step (referred to
as BERT), or (ii) following (Chang et al., 2022), iteratively sam-
pling based on the network confidence on the generated tokens,
leading to a multi-step sampling process similar to diffusion-
based models (referred to as Mask-GIT). Additionally, we com-
pare with a baseline working with continuous stroke parame-
ters, named the Continuous Transformer baseline. In this case,
the model is trained to regress the masked stroke parameters
with an MSE loss. We employ a Transformer architecture with
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similar configurations, FLOPS, and parameter counts, and ap-
ply our IAM to all the models.

As shown in Tab. 2, the Continuous Transformer baseline
fails to capture the distribution of target strokes and to use the
contextual information provided by the conditioning sequence.
Due to the MSE loss used during training, it converges to a
mean representation for each class, with failure cases more pro-
nounced in the unconditional case (see Fig. 7). On the other
hand, the baselines working with discrete strokes fail com-
pletely at modeling the relationship between the conditioning
strokes and the masked ones. We impute this to the independent
conversion of each stroke parameter to a different token, leading
to an input sequence of length L × 8, and making the computa-
tion of relationships between strokes challenging. Our method
consistently outperforms other approaches and achieves strong
performances across all the different tasks.

Qualitative Results. Qualitative results are presented in Fig. 5
and 8, where the images are displayed in the format of a con-
ditioning sequence sctx and predicted completion s̃0. We notice
how our method predicts completion consistent with the context
information in various tasks. For example, in the first column
(Level), given a rough sketch of the desired image as context,
the model adds fine-grained details in a consistent manner. At
the same time, when a large portion of a detailed painting is
missing, the model generates both coarse and detailed strokes
that harmonize with the context and complete it in a plausi-
ble manner (e.g. second column, Square). Finally, our method
can generate realistic paintings without any conditioning but
the class information (last column, No context), showcasing an-
other useful use case.
Robustness to random masking. We investigate the robustness
of our method to varying levels of random masking and com-
plement the quantitative results of Tab. 3 of the main paper with
the qualitative results in Fig. 9. This experiment showcases the
effectiveness of the conditioning sequence as a strong prior for
generation, even in high masking regimes. The results sug-
gest that our model is capable of producing accurate predictions
with limited input strokes.
Diverse suggestions from the same context. In Fig. 10 we ex-
hibit the strength of diffusion models to produce diverse results
given the same conditioning sequence. This feature is crucial
for the Collaborative Neural Painting task, providing the user
with diverse but coherent completion given the same context.
In practice, we input the same context strokes sctx with the class
c, and sample different initial random noise sT ∼ N(0, 1). We
can observe how all the competitions suggested by the model
are coherent with the context while providing some variety and
diversity among which the users can make their final decision.
Automatic inference without providing class. We probe the role
of the class conditioning c by dropping it and providing only the
context strokes to the model. We show the results in Fig. 11. We
can notice that the competition suggested by the model reflects
the expected class, suggesting that during training the model
learns to rely on the context information and implicitly learns
to associate it with a specific class. This phenomenon is further
encouraged by the CFG training procedure employed, in which
the class is not always used to train the model.

We also refer the reader to the Supp. Mat. for a demonstration
video with human interaction.

7.3. User Study
We complement our quantitative analysis with a user study

to compare the users’ preferences among the different methods.
We ask the users to rank the completion from different methods
from worst to best, given the rendered image of the conditioning
sequence sctx. We compare the predictions of our method with
the ones obtained with Continuous Transformer, MaskGIT, and
the ground truth. The study has been conducted on 20 different
users, collecting a total of 894 votes. We report the preferences
in Tab. 3, where we exhibit competitive results with the ground
truth as the best completion, and outperform the other methods
as the second-best choice.

Table 3. User study results, we compare our model against baselines and
ground truth completion.

Ground truth Ours Continuous MaskGIT

1st choice 81% 17% 1% 1%
2nd choice 18% 80% 1% 1%

7.4. Ablation Study
In this section, we evaluate the effectiveness of the compo-

nents introduced in Sec. 5, and present the results in Tab. 4.
IAM. We start our analysis by training a model without any of
our components, with simple random masking similar to BERT
(first row). We then introduce IAM and, as expected, its role is
crucial to perform well at inference time on the synthetic tasks,
especially in the no context case (second row).
PAAB. We then incorporate the Position-aware Attention bias
(PAAB), using a constant weighting of λ = 0.5 across the dif-
fusion time-steps t. We observe an performance degradation in
all the tasks, suggesting this fixed bias is not optimal to guide
the generative process.
Ada-λ. To counter this effect, we introduce adaptive weight-
ing λ which modifies the strength of the bias as a function of
log SNR of the diffusion model. The results in the fourth row
prove the effectiveness of this choice, reducing the FID in all
the tasks, and particularly in the no ctx case.
MC-CFG. In the last row, we explore the role of MC-CFG at
inference time, which leads to further improvement in the per-
formances.
Robustness. Moreover, we study the robustness of our model
to different masking ratios. We test the model on random
task, varying the percentage of masked strokes (see Tab. 5).
Our model exhibits good performance even in a high masking
regime, i.e. 80%, showing that even a few strokes are sufficient
to provide context to the network.
Scaling. Lastly, we investigate the scaling laws governing our
model and design three configurations: MDT-S(mall), MDT-
B(ase), and MDT-L(arge), as described in Tab. 6. The results
reported in the table correspond to the ablation with all com-
ponents included except MC-CFG. We observed a consistent
performance improvement by scaling up the model, suggesting
that performance could be further improved by increasing the
capacity.
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Table 4. Ablation study of our proposed components. IAM, PAAB, and
MC-CFG stand for Interaction-aware Masking, Position-aware Attention
Bias, and Multiple Conditions Classifier-free guidance, respectively.

IAM PAAB Ada-λ MC-CFG FID ↓

Block Level Random Square No ctx

✗ ✗ ✗ ✗ 8.78 11.66 18.41 7.51 233.21
✓ ✗ ✗ ✗ 9.23 11.65 21.92 7.17 36.96
✓ ✓ ✗ ✗ 9.51 11.85 22.61 7.34 37.94
✓ ✓ ✓ ✗ 8.43 10.34 19.25 6.63 30.46
✓ ✓ ✓ ✓ 6.20 7.29 12.69 5.53 30.12

Table 5. Performance of our model w.r.t. masking percentage in the random
setting.

Masking % 20% 40% 60% 80% 100%

FID ↓ 6.57 10.42 13.67 19.05 30.12

Table 6. Details of MDT models. Model configurations for the Small (S),
Base (B), and Large (L) variants and corresponding performance on the
proposed task.

Model Layers N F Heads GFLOPS FID ↓

Block Level Random Square Unconditional

MDT-S 6 576 6 9.09 8.67 11.24 22.69 7.34 55.25
MDT-B 8 768 12 21.27 6.81 8.39 14.96 6.02 36.29
MDT-L 12 768 12 31.89 6.20 7.29 12.69 5.53 30.12

7.5. Real-time analysis

Table 7. Model performance w.r.t. number of sampling steps.

Sampling steps FID ↓

Block Level Random Square Unconditional

35 6.42 7.83 12.81 5.40 36.74
50 6.10 7.59 11.97 5.34 31.64
70 5.90 7.12 11.71 5.28 28.30

125 5.95 7.01 12.06 5.24 27.95
250 5.98 7.19 12.12 5.42 28.05
500 6.08 7.09 12.37 5.47 29.73

1000 6.20 7.29 12.69 5.53 30.12

We test our model on a single NVIDIA A100. Performing
1000 denoising steps requires ∼ 8 seconds, meaning ∼ 8 ms per
step. In Table 7, we present the effect of using a reduced num-
ber of steps for sampling, and we find that the model performs
consistently well after ∼ 70 steps. A number of steps under 70
leads to degraded performance. Thus, we opt to use 70 steps
for demo purposes, resulting to a sampling time of ∼ 560 ms, a
reasonable time for real-time interactions.

8. Conclusions

We introduced Collaborative Neural Painting, a novel task
to facilitate collaborative art generation. We exploit a
parametrized vector formulation for strokes to achieve editabil-
ity and composability in painting generation. We proposed a
novel Transformer-based architecture to solve the Collaborative
Neural Painting task and designed a novel attention mechanism
and masking scheme to tackle the challenges brought by the
stroke formulation and the arbitrary user interaction, exhibit-
ing state-of-the-art performance both quantitatively and quali-
tatively. Our proposed method is class-agnostic thus being po-
tentially applicable to datasets of higher semantic cardinality.

Future study involves extending the dataset for further inves-
tigation and incorporating language models to enable open-set
semantics. Moreover, we plan to investigate more efficient sam-
pling and diffusion strategies in order to enable a more reactive
user experience with the model. Finally, it is also interesting to
study how to better blend the generated objects with the back-
ground.
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Fig. 6. Dataset generation pipeline. We show the images generated with Stable Diffusion Rombach et al. (2022), the segmentation obtained with Lüddecke
and Ecker (2022), and the stroke representation Zou et al. (2021).
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Conditioning MaskGIT Chang et al. (2022)Continuous Transformer Ours

Fig. 7. Comparison with baselines. Given the same conditioning sequence, we show the completion obtained with MaskGIT Chang et al. (2022), Continuous
Transformer and our method.
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Fig. 8. Qualitative completion results of our method. Images are organized in blocks of 2. On the left the conditioning sequence sctx, on the right the
conditioning with the completion added, i.e. s̃0.
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Fig. 9. Robustness to random masking. Images are organized in blocks of 2. On the left the conditioning sequence sctx, on the right the conditioning with
the completion added, i.e. s̃0. The images are presented with an increasing percentage of strokes masked as conditioning from the left to the right.
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Fig. 10. Diverse suggestions from the same context. On the left is the conditioning sequence sctx, and on the right are the diverse completions.
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Fig. 11. Automatic inference without providing class. Images are organized in blocks of 2. On the left the conditioning sequence sctx, on the right the
conditioning with the completion added but no class provided.
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