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ABSTRACT

This paper investigates the performance of diffusion models for
video anomaly detection (VAD) within the most challenging but
also the most operational scenario in which the data annotations are
not used. As being sparse, diverse, contextual, and often ambiguous,
detecting abnormal events precisely is a very ambitious task. To
this end, we rely only on the information-rich spatio-temporal data,
and the reconstruction power of the diffusion models such that a
high reconstruction error is utilized to decide the abnormality. Ex-
periments performed on two large-scale video anomaly detection
datasets demonstrate the consistent improvement of the proposed
method over the state-of-the-art generative models while in some
cases our method achieves better scores than the more complex mod-
els. This is the first study using a diffusion model and examining its
parameters’ influence to present guidance for VAD in surveillance
scenarios.

Index Terms— Anomaly Detection, unsupervised learning,
video understanding, imbalanced data

1. INTRODUCTION
Automated video anomaly detection (VAD) has become an essen-
tial task in the computer vision community as a consequence of the
exponential increase in the number of videos being captured. VAD
is relevant to several applications in intelligent surveillance, and be-
havior understanding [1, 2, 3, 4, 5, 6], to name a few. Anomaly is
commonly defined as a rare or unexpected or unusual entity, that
diverges significantly from normality, which is defined as expected
and common. Despite being sparse and diverse, the abnormal events
are also very contextual, and often ambiguous, thus they challenge
the performance of the VAD models [7].

Data labeling is already a notoriously expensive and time-
consuming task and considering the aforementioned characteristics
of the abnormal events, it is almost infeasible to collect all possi-
ble anomaly samples to perform fully-supervised learning methods.
Therefore, a typical approach in VAD, is to train a one-class classi-
fier that learns from the normal training data [8, 9, 10]. However,
the data collection problem occurring for fully-supervised learning
almost remains for the one-class classifier, since it is unfeasible
to have access to every variety of normal training data, given the
dynamic nature of real-world applications and the wide range of
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Fig. 1: The proposed method takes a batch of unlabeled video clips
as the input and learns to determine whether each frame is anoma-
lous or exhibits normal behavior. Our model is a generative one,
which leverages the reconstruction capability of diffusion models for
unsupervised VAD. Mean Squared Error (MSE) distribution over a
batch is used in conjunction with a data-driven threshold to decide
which frames are anomalous. For the purpose of clarity, we show
only one video clip.

normal classes [4, 5]. In a one-class classifier setting, it is highly
possible that an unseen normal event can be misclassified as ab-
normal since its representation is remarkably different from the
representations learned from normal training data.

The data availability problem led some researchers to define the
weakly supervised VAD, which does not rely on fine-grained per-
frame annotations but wields the video-level labels [11, 12]. In de-
tail, in fully-supervised VAD each individual frame has an annota-
tion as normal or abnormal. Instead, in weakly supervised VAD, a
video is labeled as anomalous even if only one frame of it is anoma-
lous, and labeled as normal when all frames of it are normal. Even
though performing such annotations seems relatively cheaper, it is
important to notice that, in the weekly supervised setting, (a) la-
beling a video as normal still requires inspection of whole frames
(similar to the fully-supervised setting), and (b) such methodologies
often fail to localize the abnormal portion of the video, which can be
impractical, e.g., when the video footage is long.

Recently, Zaheer et al. [13] defined unsupervised VAD, which
takes unlabelled videos as the input and learns to make the deci-
sion of anomaly or normality for each frame. Such a fashion is
undoubtedly more challenging compared to fully, weakly, and one-
class counterparts, but it literally brings in the advantage of not re-
quiring data annotations at all. It is worth differentiating the defini-
tion of unsupervised VAD [13] from one-class VAD since the latter
is being referred to as unsupervised in some studies [14, 15, 10, 16,
17, 18]. In the case of one-class VAD, the training data distribution
represents only the normality, meaning that there still exists a no-
tion of labeling. Whereas the implementation of unsupervised VAD
[13] does not make any assumption regarding the distribution of the
training data, and never uses the labels for model training, instead, it
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relies only on the spatiotemporal features of the data.
In this study, we perform unsupervised VAD by leveraging the

information-rich unlabelled videos. To do so, we only depend on
the reconstruction capability of the diffusion models [19] (see Fig. 1
for the proposed method’s description). This is the first attempt that
the effectiveness of the diffusion models is being investigated for
VAD in surveillance scenarios. The aim of this work is to present an
exploratory study: (a) to understand whether diffusion models can
be effectively used for unsupervised VAD, and (b) to discover the
behavior of the diffusion model [19] in terms of several parameters
of it for VAD. Experimental analysis performed on two large-scale
datasets: UCF-Crime [2] and ShanghaiTech [3], demonstrate that
the proposed approach always performs better than the state-of-the-
art (SOTA) generative model of VAD. Moreover, in some cases, the
proposed method is able to surpass more complex SOTA methods
[13, 20]. The code of our method and the SOTA [13] is publicly
available HERE.

2. RELATED WORK
Anomaly detection is a widely studied topic that regards several
tasks such as medical diagnosis, fault detection, animal behavior un-
derstanding, and fraud detection. Interested readers can refer to a re-
cent survey: [4]. Below, our review focuses on VAD in surveillance
scenarios. We also present the definition and notations of diffusion
models and state the methodology we follow for VAD.
Video Anomaly Detection in Surveillance Scenarios. VAD has
been typically solved as an outlier detection task (i.e., one-class
classifier), in which a model is learned from the normal training
data (requiring data annotations), and during testing, an abnormal-
ity is detected with the approaches such as distance-based [21],
reconstruction-based [8] or probability-based [22]. Such approaches
might result in an ineffective classifier since they exclude the ab-
normal classes during training. This might occur particularly when
a sufficient amount of data representing each variety of the normal
class cannot be used in training. An alternative approach is us-
ing unlabelled training data without assuming any normalcy [13],
referred to as (fully) unsupervised VAD. Unlike one-class classi-
fiers, unsupervised VAD does not require data labeling and can
potentially generalize well by not excluding the abnormal data from
training. Zaheer et al. [13] proposed a Generative Cooperative
Learning composed of a generator and a discriminator mutually
being trained together with the negative learning paradigm. The
generator which is an autoencoder reconstructs the normal and ab-
normal representations while using the negative learning approach
to help the discriminator to estimate the probability of an instance
being abnormal with a data-driven threshold. That approach [13]
conforms that anomalies are less frequent than normal events and
events are often temporally consistent. In this study, we follow the
unsupervised VAD definition in [13]. Unlike [13], our method relies
only on a generative architecture, which is based on a diffusion
model. We, first time in this study, investigate the effectiveness of
the diffusion models for VAD in surveillance scenarios, by reporting
how individual parameters affect the model performance, and by
comparing them with the SOTA.
Diffusion Models. Diffusion models (DMs) [23, 24] are a type of
generative model that gains the ability to generate diverse samples
by corrupting training samples with noise and learning to reverse the
process. These models have achieved SOTA performance in tasks
such as text-to-image synthesis [25], semantic editing [26], and au-
dio synthesis [27]. They have also been used in representation learn-
ing for discriminative tasks like object detection [28], image seg-
mentation [29], and disease detection [30]. This study is the first

attempt to apply DMs for video anomaly detection.
DMs are formulated as a progressive addition of Gaussian noise

of standard deviation σ to an input data point xT sampled from a
distribution pdata(x) with standard deviation σdata. The noised dis-
tribution p(x, σ), for σ ≫ σdata, becomes isotropic Gaussian and
allows to sample a point x0 ∼ N (0, σmaxI). This point is gradu-
ally denoised with noise levels σ0 = σmax > σT−1 > · · · > σ1 >
σT = 0 into new samples distributed according to the dataset distri-
bution. DMs are trained with Denoising Score Matching [31], where
a denoiser function Dθ(x;σ) minimizes the expected L2 denoising
error for samples drawn from pdata for every σ:

Ex∼pdataEϵ∼N (0,σI)||Dθ(x+ ϵ;σ)− x||22, (1)

and the score functions used in the reverse process become:

∇ log p(x;σ) = (Dθ(x;σ)− x)s/σ2. (2)

In this paper, we adapt the diffusion model of [19], whose details are
described in the next section.

3. METHOD

Given a video clip, we first extract features from a 3D-CNN (F ) both
in training and testing. These features are supplied to the generator,
which is a diffusion model, to reconstruct them without using the
labels. We follow the diffusion model variant proposed in [19] and
refer to it as k-diffusion. It disentangles the design choices of previ-
ous diffusion models and provides a framework where each compo-
nent can be adjusted separately, as shown in Table 1. In particular,
Karras et al. [19] exposes the issue of expecting the network Dθ

to work well in high noise regimes, i.e. when σt is high. To solve
this, k-diffusion proposes a σ-dependent skip connection, allowing
the network to perform x0 or ϵ-prediction, or something in between
based on the noise magnitude. The denoising network Dθ , therefore,
is formulated as follows:

Dθ(x;σ) = cskip(σ) x+ cout(σ) Fθ

(
cin(σ) x; cnoise(σ)

)
, (3)

where Fθ becomes the effective network to train, cskip modulates
the skip connection, cin(·) and cout(·) scale input and output mag-
nitudes, and cnoise(·) scales σ to become suitable as input for Fθ .

Several hyperparameters control the diffusion process in k-
diffusion, and we extensively explore the role of training noise –
distributed according to a log-normal distribution with parameters
(Pmean, Pstd) – and sampling noise with boundary values of σmin

and σmax. These distributions are crucial choices depending on the
task and on the dataset [32]. Given we use diffusion models on an

Table 1: The design choice of k-diffusion. T is the Number of Func-
tion Evaluations (NFEs) executed during sampling. The correspond-
ing sequence of time steps is {t0, t1, . . . , tT }, where tT = 0. Fθ

represents the raw neural network.
Sampling
ODE solver LMS
Time steps (σmax

1
ρ + i

T−1
(σmin

1
ρ − σmax

1
ρ ))ρ

Network and preconditioning
Architecture of Fθ Any, MLP in our case
Skip scaling cskip(σ) σ2

data/
(
σ2 + σ2

data

)
Output scaling cout(σ) σ · σdata/

√
σ2
data + σ2

Input scaling cin(σ) 1/
√

σ2 + σ2
data

Noise cond. cnoise(σ)
1
4
ln(σ)

Training
Noise distribution ln(σ) ∼ N (Pmean, P

2
std)

Loss weighting
(
σ2+σ2

data

)
/(σ · σdata)

2
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Algorithm 1 Anomaly detection with denoising diffusion
Require: Batch of video clips x, feature extractor network F , denoising network D,

denoising step t, threshold sensitivity k
1: fea = F (x) # Feature extraction with the backbone F
2: ϵ ∼ N (0, I) # Noise sampling for k-diffusion
3: feat = fea + ϵ ∗ σt # Diffusion input corruption
4: ˆfea = sampling(D(feat, σt)) # Reconstruction of a feature vector with k-

diffusion algorithm
5: Lb = MSE(fea, ˆfea) # Reconstruction loss computation
6: Lth = µp + kσp # Data-driven threshold Lth

7: If Lth < Lb then abnormal, otherwise normal # Lb is the loss in a batch
8: Return Normal or Abnormal

unprecedented task and on new datasets we do not rely on param-
eters from literature, instead, we perform an extensive study of the
correlation between noise and performance on the task in Sec. 4.2.

The reverse process of a DM does not need to start from noise
with variance σ2

max but it can place at any arbitrary step t ∈ (0, T ),
with σ2

max = σ2
0 as shown in [26]. Given a real data point x, we

can sample xt ∼ N (x, σtI) and then apply the reverse process to
xT . This allows for retaining part of the information of the origi-
nal data point – the low-frequency component – and removing the
high-frequency component. We exploit this property to remove the
components associated with abnormal parts of the clip by adding
Gaussian noise. Then, we measure the goodness of reconstruction
using mean squared error (MSE), meaning that a high reconstruction
error might indicate the presence of abnormal activity. The choice
of the starting point t for this procedure is a crucial hyperparameter
of the method, as it controls the realism-faithfulness tradeoff as de-
scribed in [26]. Refer to Sec. 4.2 presenting a study to understand
the influence of this tradeoff on VAD.

We adopt [13] to decide whether a video frame is anomalous.
In detail, the decision for a single video frame is made by keeping
the distribution of the reconstruction loss (MSE) of each instance
over a batch. The feature vectors resulting in higher loss refer to
anomalous and smaller loss refers to normal while this decision is
made through a data-driven threshold (Lth), defined as Lth = µp +
k σp where k is a constant, µp and σp are the mean and standard
deviations of the MSE loss for each batch. The anomaly detection
phase is given in Algorithm 1.

4. EXPERIMENTAL ANALYSIS AND RESULTS

As the evaluation metric, we use the area under the Receiver Oper-
ating Characteristic (ROC) curve (AUC), which is computed based
on frame-level annotations of the test videos of the datasets, in line
with the prior arts. To evaluate and compare the performance of the
proposed method, experiments are conducted on two large-scale un-
constrained datasets: UCF-Crime [2] and ShanghaiTech [3]. The
UCF-Crime dataset [2] is collected from various CCTV cameras,
having different field-of-views. It is composed of in total 128 hours
of videos with the annotation of 13 different real-world anomalous
events such as road accidents, stealing, and explosion. We use the
standard training (810 abnormal and 800 normal videos, without us-
ing the labels) and testing (130 abnormal and 150 normal videos)
splits of the dataset to provide fair comparisons with SOTA. Shang-
haiTech dataset [3] is captured in 13 different camera angles with
complex lighting conditions. We use the training split that contains
63 abnormal and 174 normal videos and the testing split composed
of 44 abnormal and 154 normal videos curated in line with SOTA.

We use 3D-ResNext101 and 3D-ResNet18 as feature extractors
F due to their popularity in VAD [4, 5, 13]. 3D-ResNext101 has a
dimensionality of 2048, and 3D-ResNet18 has 512 dimensions. The
denoising network D is an MLP with an encoder-decoder structure.

The encoder is composed of 3 layers of size {1024, 512, 256} while
the decoder has the structure of {256, 512, 1024}. The learning rate
scheduler and EMA of the model are taken as the default values of
k-diffusion, with an initial learning rate of 2 × 10−4 and InverseLR
scheduling; weight decay is set at 1×10−4. Segment size for feature
extraction is set to 16 non-overlapping frames and the training is
performed up to 50 epochs with a batch size of 8192 in line with [13].
The timestep σt is transformed via Fourier embedding and integrated
into the network through FiLM layers [34] both in the encoder and
the decoder segments of the network. The hyperparameters (e.g.,
Pmean, Pstd, t) used to realize k-diffusion are given in Sec. 4.2.

4.1. Comparisons with State-Of-The-Art (SOTA)
The performance of the proposed method is compared with the
SOTA [20, 13] in Table 2. Kim et al. [20] proposed a one-class VAD
method, which was then adopted to perform unsupervised VAD
in [13]. In our comparisons, we use the unsupervised version of
[20]. The proposed approach surpasses [20] within a large margin
of: 10.91-12.41% AUC. The comparisons between the proposed
method and the autoencoder of [13] demonstrate that as a generative
model, the proposed method is more favorable than [13] by better
performing VAD within a margin of: 6.15-14.44% AUC. When the
features extracted from 3D-ResNext101 are used, the full model of
[13] achieves better results than the proposed method. This is rather
not surprising given that the full model of [13] is more complex than
a generative model (i.e., autoencoder or diffusion model) since it
additionally includes a discriminator and a negative learning com-
ponent. Importantly, when 3D-ResNet18 is used as the backbone,
the proposed method exceeds the full model of [13] within a large
margin of: 4.9-8.36% AUC. Such results confirm the remarkable
effectiveness of k-diffusion to perform VAD.

4.2. Diffusion Model Analysis
Below, the effect of different hyperparameters of k-diffusion model
and a comparative study regarding timestep embeddings are given.
Noise. The training and sampling noise distributions are not in-
dependent in k-diffusion model, and we computed the relation be-
tween (Pmean, Pstd) and (σmin, σmax) to be governed by the fol-
lowing formula: σmax, σmin = ePmean±5Pstd . This allows us
to restrict our search to two parameters instead of four. We also
extracted the formula using the default parameters of k-diffusion:
Pmean = −1.2, Pstd = 1.2, σmin = 0.02 and σmax = 80. The
corresponding results are given in Fig. 2 when the k of Lth is taken
as 1 for ShanghaiTech dataset [3] with 3D-ResNet18. One can ob-
serve that, in general, a smaller value of Pmean leads to higher re-
sults. This shows that we perform diffusion in a latent space that
is well-behaved, and therefore a lower amount of noise is needed to
reach an isotropic Gaussian distribution.
Starting point of the reverse process. Similar to SDEdit [26] and
their realism-faithfulness tradeoff, we explore the effect of different
t as the starting point of the reverse process. Recall that σt > σt+1

means that a t close to zero indicates a noised xt closer to isotropic
Gaussian, instead for t closer to T means, the features used are
closer to the original data distribution. We target to find the best
value of t such that sufficient information about the structure of the
clip is retained while the information about the possible anomaly is
destroyed. In this way, one can obtain a higher reconstruction er-
ror, leading to deciding the associated video frame as anomalous.
The corresponding results are given in Fig. 2 when k of Lth is 1.
t = best refers to the best results obtained from t = 0 to t = 9,
given a fixed Pmean, Pstd combination. For ShanghaiTech with 3D-
ResNet18 backbone, the majority of the time the starting point t = 4



Table 2: Performance comparisons with the SOTA on (a) UCF-Crime [2] and (b) ShanghaiTech [3] datasets. The best results are in bold.
The second best results are underlined. The full model of [13] includes generator, negative learning, and discriminator. ⋆ indicates our
implementation since the corresponding code is not publicly available. The results indicated with ⋄ were taken from [13].

Method Feature AUC (%)
Kim et al. [20]⋄ 3D-ResNext 101 52.00
Autoencoder [13] 3D-ResNext 101 56.32
Autoencoder [13]⋆ 3D-ResNext 101 56.27
Full model [13] 3D-ResNext 101 68.17
Full model [13]⋆ 3D-ResNext 101 58.30
Proposed w/ [33] 3D-ResNext101 59.42
Proposed 3D-ResNext 101 62.91
Autoencoder [13]⋆ 3D-ResNet18 49.78
Full model [13]⋆ 3D-ResNet18 56.86
Proposed w/ [33] 3D-ResNet18 60.52
Proposed 3D-ResNet18 65.22

(a) Results on UCF-Crime [2]

Method Feature AUC (%)
Kim et al. [20]⋄ 3D-ResNext 101 56.47
Autoencoder [13] 3D-ResNext 101 62.73
Autoencoder [13]⋆ 3D-ResNext 101 62.05
Full model [13] 3D-ResNext 101 72.41
Full model [13]⋆ 3D-ResNext 101 65.62
Proposed w/ [33] 3D-ResNext101 62.41
Proposed 3D-ResNext 101 68.88
Autoencoder [13]⋆ 3D-ResNet18 69.02
Full model [13]⋆ 3D-ResNet18 71.20
Proposed w/ [33] 3D-ResNet18 74.23
Proposed 3D-ResNet18 76.10

(b) Results on ShanghaiTech [3]

Fig. 2: The effect of noise and the starting point of the reverse pro-
cess while performing k-diffusion for VAD. The results (AUC %)
belong to ShanghaiTech dataset [3] with 3D-ResNet18 backbone.

results in the best performances. The best of all results was observed
when t = 6. For all other datasets, and backbone combinations, the
best results were obtained with t = 9. Overall, increasing the t value
for a fixed combination of Pmean, Pstd improves the VAD results.
Threshold Lth. Given the abnormality threshold Lth = µp + k σp,
the effect of k was investigated by setting its value to: 0.1, 0.3, 0.5,
0.7, and 1. For 3D-ResNext101, the best results correspond to k=0.5
for both ShanghaiTech and UCF Crime. For 3D-ResNet18, k=0.7
and 0.1 for ShanghaiTech and UCF Crime, respectively, result in the
best scores. The difference between the highest and lowest perfor-
mances upon changing the value of k is up to 3% AUC when the
values of all other hyperparameters are kept the same.
Timestep embeddings. As mentioned before, our method includes
transforming the timestep σt via Fourier embedding and integrat-
ing it into the network through FiLM layers [34]. We also adopted
the implementation of [33], which concatenates the timestep embed-
dings together with its sinus and cosinus values (shown as Proposed
w/ [33] in Table 2). The results confirm the better performance of
our proposal wrt to adapting [33] for all cases while both surpassing
the SOTA with the 3D-ResNet18 features.

4.3. Qualitative Results
Fig. 3 shows the anomaly scores produced by our approach for ex-
ample video clips. As seen, independent of the type of anomaly,
the anomaly scores increase immediately when ground-truth anoma-
lies start and decrease right after the ground-truth anomalies finish,
showing that the proposed method is favorable for VAD.

Fig. 3: Predicted frame-level anomaly scores (black), predicted start-
ing frames of an anomaly interval (red arrow), predicted highest
anomaly score in an interval (blue arrow), ground-truth anomalies
(yellow shadows), spatial reasoning of the anomaly (orange boxes).

5. CONCLUSION
Unsupervised video anomaly detection (VAD) presents the advan-
tage of not requiring data annotation for learning. This solves the
problems posed by the heterogeneity of normal and anomalous in-
stances and the scarcity of anomalous data. This paper is the first
attempt to investigate the capability of diffusion models for VAD in
video surveillance in which we have specifically investigated the use
of high reconstruction error as an indicator of abnormality. The ex-
periments performed on popular benchmarks show that the proposed
model achieves better performance compared to SOTA generative
model: autoencoders independent of the feature extractor used. Our
model, although relying only on the reconstruction of the spatial-
temporal data, is able, in some cases, to surpass the performance
of more complex methods, e.g. the ones performing collaborative
learning of generative and discriminative networks. We have also
presented a guideline on how the diffusion models (particularly the
k-diffusion [19] formulation) should be utilized in terms of its sev-
eral parameters for VAD. The future work includes investigating the
generalization ability of our method in cross-dataset settings.
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